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SUMMARY

In this paper, the Cartesian velocity components and the covariant velocity components are adopted
respectively as the main variables in solving the momentum equations in the SIMPLE-like method to
calculate a lid-driven cavity flow on non-orthogonal collocated grids. In total, more than 400 computer
runs are carried out for a two-dimensional problem. The accuracy and convergence performance of using
Cartesian and covariant velocity components are compared in detail. Comparisons show that both the
Cartesian and covariant velocity methods have the same numerical accuracy. The convergence rate of the
covariant velocity method can be faster than that of the Cartesian velocity method if the relaxation factor
for pressure is small enough. However, the convergence range of the relaxation factor for pressure in the
covariant velocity method is quite narrow. When the cross-derivatives in the pressure-correction equation
are retained approximately, its convergence performance can be greatly improved. Copyright © 1999
John Wiley & Sons, Ltd.
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1. INTRODUCTION

Since the appearance of the SIMPLE method [1], wide use has been made of it in the numerical
computation of incompressible flows. In order to improve the convergence performance of the
SIMPLE method, various variants have been developed, such as the SIMPLER [2] and
SIMPLEC [3] methods. Originally, the SIMPLE method used a staggered grid system to avoid
the appearance of the checkerboard pressure field. Owing to the difficulty of programme
making on a staggered grid system, people had been trying to solve the pressure oscillation
problem on a collocated grid system. Rhie and Chow [4] first successfully solved the pressure
oscillation problem on a collocated grid by using the cell-face momentum interpolation
technique. Peric et al. [5] and Melaaen [6,7] compared the accuracy and convergence perfor-
mance of the staggered and collocated grid methods on orthogonal and non-orthogonal grids.
Their comparisons show that there is no significant difference between the two grid systems.
Therefore, more and more studies based on the collocated grid system have appeared owing to
its simplicity [8–10].
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For computations of fluid flow on the orthogonal grid, there is no difficulty for the
SIMPLE-like method to reach a convergent solution. When the grids are strongly non-
orthogonal, however, a convergence difficulty is frequently encountered. For example, Peric [9]
had to use a relaxation factor for pressure as low as 0.05 to get a convergent solution for the
flow in a curved channel. Ricon and Elder [10] also had to adopt a relaxation factor for
pressure as low as 0.05 to calculate the flow through turbine cascades.

For non-orthogonal grids there are several ways to select the main variables in solving the
momentum equations, such as the Cartesian, covariant and contravariant velocity components.
Usually, the Cartesian velocity components are used as the main variables in the momentum
equations (the so-called Cartesian velocity method). When the covariant velocity components
are regarded as the main variables, the pressure–velocity coupling can become quite simple,
and the numerical error to calculate the cross-derivatives of the pressure gradient can be
avoided (the so-called covariant velocity method). However, the expression of convective and
diffusive fluxes is more complicated. When the Cartesian velocity method is used on strongly
non-orthogonal grids, the staggered grid system is invalid in avoiding the checkerboard
pressure field, since the directions of the grid lines are no longer the same as those of the
Cartesian velocity components. For the staggered grid system, therefore, the covariant or
contravariant velocity method is the better choice for avoiding the checkerboard pressure field.
For the collocated grid system, one can avoid the checkerboard pressure field using the cell
face momentum interpolation scheme regardless if the Cartesian, covariant or contravariant
velocity components are adopted. For the convenience of programming, the covariant method
is frequently used on a collocated grid system. For example, Karki and Patankar [11] adopted
the covariant velocity method on a staggered grid system. Demirdzic et al. [12], Tamamidis and
Assanis [13] and Wang and Komori [14] adopted the covariant velocity method on a collocated
grid system. However, nobody has proven whether the convergence performance of the
covariant velocity method is really superior to that of the Cartesian velocity method in the
SIMPLE-like method. In this paper, the numerical accuracy and convergence performance of
the Cartesian and covariant velocity methods are compared by solving a two-dimensional
lid-driven cavity flow on non-orthogonal collocated grids. Some valuable conclusions are
drawn from the comparisons.

2. MATHEMATICAL FORMULATION

2.1. Go6erning equations

The continuity equation and the conservation form of the transport equation for a general
dependent variable f in a curvilinear co-ordinate system (j, h) can be written as
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where U and V are the contravariant velocity components; G is the general diffusion
coefficient, and J is the Jacobian of the transformation; S(j, h) is the source term on the
computational plane; with x, 8 and g as the coefficients of transformation.

U=uyh−6xh, V=6xj−uyj, (3)
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J=xjyh−xhyz, x=xjxh+yjyh, (4a)

8=xh
2 +yh

2, g=xj
2 +yj

2. (4b)

2.2. Discretization of the transport equation

Integrating Equation (2) over the control volume of node P as shown in Figure 1, you get
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+JS(j, h) Dj Dh.

(5)

When a proper scheme is used to calculate the convection and diffusion terms in Equation (5),
the finite difference equation can be written as

APfP=AEfE+AWfW+ANfN+ASfS+SNEW. (6)

In this study, the power-law scheme is used.
Usually, all variables are underrelaxed in iteration so as to guarantee the convergence of the

solution. As a result, Equation (6) can be rewritten as

AP

a
fP=% Anbfnb+SNEW+ (1−a)

AP

a
f*P, (7)

where a is the relaxation factor. The superscript asterisk denotes the value of the last iteration.
Equation (7) is the general form for all dependent variables. For the Cartesian velocity

components u and 6, Equation (7) can be rearranged as

AP

au

uP=% Anbunb+Su+
(1−au)

au

APu*P, (8a)

AP

au

6P=% Anb6nb+S6+
(1−au)

au

AP6*P, (8b)

where au is the relaxation factor for velocity. Su and S6 are the corresponding source terms.
When the pressure gradient terms are separated from the source terms, Equations (8a) and

(8b) can be rewritten as

Figure 1. Grid arrangements: (a) physical plane; (b) computational plane.
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AP

au

uP=% Anbunb+Su− (yhpj−yjph) Dj Dh+
(1−au)

au

APu*P, (9a)

AP

au

6P=% Anb6nb+S6− (xjph−xhpj) Dj Dh+
(1−au)

au

AP6*P. (9b)

When the Cartesian velocity components are adopted as the main variables in the momen-
tum equations, Equations (9a) and (9b) can be solved for u and 6. However, when the
covariant velocity components uj and uh are used as the main variables, discretization
equations for uj and uh should be derived. These discretization equations can be derived using
the conventional differential formulation approach. To avoid the use of tensor analysis for the
derivation of the curvature source terms, however, discretization equations for uj and uh are
usually obtained in the algebraic way [11,13,14].

The covariant velocity components uj and uh are related to u and 6 via

uj= (uxj+6yj)/g1/2, (10a)

uh= (uxh+6yh)/81/2. (10b)

Substitution of Equations (9a) and (9b) into Equation (10a), for example, yields

AP

au

uj,P=% Anbu %j,nb+S %u
j
+

(1−au)
au

APu*j,P, (11)

where

u %j,nb= (xj/g1/2)Punb+ (yj/g1/2)P6nb, (12)

S %u
j
= (xj/g1/2)PSu+ (yj/g1/2)PS6. (13)

Rearranging Equation (11), the discretization equation for uj can be derived as

AP

au

uj,P=% Anbuj,nb+% Anb(u %j,nb−u*j,nb)+S %u
j
+

(1−au)
au

APu*j,P. (14)

For later reference, Equation (14) can be rewritten in a compact form, with the pressure
gradient term appearing explicitly on the right-hand side:

AP

au

uj,P=% Anbuj,nb−pjcj+Su
j
+

(1−au)
au

APu*j,P, (15a)

where cj=J Dj Dh/g1/2. Su
j

is the source term excluding the pressure gradient term.
Similarly, the discretization equation for uh can be written as

AP

au

uh,P=% Anbuh,nb−phch+Su
h
+

(1−au)
au

APu*h,P, (15b)

where ch=J Dj Dh/81/2. Su
h

is the source term excluding the pressure gradient term.
Compared with Equations (9a) and (9b), it is seen that the cross-derivatives of pressure in

Equations (15a) and (15b) have disappeared. Therefore, in the covariant velocity method, the
pressure–velocity coupling will become easier.

2.3. Pressure-correction equation

In the SIMPLE-like method, pressure is calculated using the correction method. The
pressure-correction equation can be derived from the continuity equation. When the momen-
tum equations have been solved, the Cartesian, covariant, contravariant velocity components
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and pressure are supposed to be u*, 6*, uj*, uh*, U*, V* and p*, which in general do not satisfy
the continuity equation. To satisfy the continuity equation, the corresponding corrections are
supposed to be u %, 6%, uj% , uh% , U %, V % and p %. Therefore, there exists the following relations:

u=u*+u %, 6=6*+6%, (16a)

uj=u*j+u %j, uh=u*h+u %h, (16b)

U=U*+U %, V=V*+V %, (16c)

p=p*+p %. (16d)

Substituting Equations (16a) and (16d) into Equations (9a) and (9b), you get

AP

au

u %P=% Anbu %nb− (yhp %j−yjp %h) Dj Dh, (17a)

AP

au

6%P=% Anb6%nb− (xjp %h−xhp %j) Dj Dh. (17b)

From previous experience, it is found that when the SIMPLEC method is used to
approximate the pressure–velocity coupling, the convergence performance on strongly non-
orthogonal grids can be greatly improved in comparison with the SIMPLE method. Therefore,
the SIMPLEC method is also adopted in this study. According to the SIMPLEC method, the
relations between velocity corrections and pressure corrections can be written as

u %P= (Bup %j+Cup %h), (18a)

6%P= (B 6p %j+C 6p %h), (18b)

where

Bu= −
yh Dj Dh

AP/au−% Anb

, Cu= −
yj Dj Dh

AP/au−% Anb

, (19a)

B 6=
xh Dj Dh

AP/au−% Anb

, C 6= −
xj Dj Dh

AP/au−% Anb

. (19b)

By substituting Equations (18a) and (18b) into Equation (3), corrections of the contravariant
velocity components can be written as

U %= (Buyh−B 6xh)p %j+ (Cuyh−C 6xh)p %h, (20a)

V %= (C 6xj−Cuyj)p %h+ (B 6xj−Buyj)p %j, (20b)

where the underlined parts in Equations (20a) and (20b) are usually called the cross-derivatives
of the pressure corrections, and for orthogonal grids they are zero.

In the covariant velocity method, corrections of the covariant velocity components can be
calculated by

u %j= −
p %jcj

AP/au−% Anb

, (21a)
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u %h= −
p %hch

AP/au−% Anb

. (21b)

According to the definition of the contravariant velocity components, the corrections of the
contravariant velocity components are related to the corrections of the covariant velocity
components via

U %= (8g1/2u %j−x81/2u %h)/J, (22a)

V %= (g81/2u %h−xg1/2u %j)/J. (22b)

If Equations (21a) and (21b) are substituted into Equations (22a) and (22b), Equations (20a)
and (20b) can also be derived. Therefore, no matter if the covariant velocity components or the
Cartesian velocity components are adopted as the main variables in the momentum equations,
the relations between the corrections of the contravariant velocity components and pressure
corrections are identical.

Then the contravariant velocity components satisfying the continuity equation can be
expressed as

U=U*+Bp %j+Dp %h, (23a)

V=V*+Cp %h+Ep %j, (23b)

where

B=Buyh−B 6xh, C=C 6xj−Cuyj, (24a)

D= (Cuyh−C 6xh), E= (B 6xj−Buyj). (24b)

When Equation (1) is integrated over the control volume of node P, the discretization form of
the continuity equation can be written as

[rU Dh ]we + [rV Dj ]sn=0. (25)

Substituting Equations (23a) and (23b) into Equation (25), and neglecting the cross-derivatives
of pressure corrections, the pressure-correction equation can be formulated as

AP
p p %P=AE

p p %E+AW
p p %W+AN

p p %N+AS
pp %S+mp, (26)

where

AE
p = (rB Dh/dj)e, (27a)

AW
p = (rB Dh/dj)w, (27b)

AN
p = (rC Dj/dh)n, (27c)

AS
p = (rC Dj/dh)s, (27d)

AP
p =AE

p +AW
p +AN

p +AS
p, (27e)

mp= (rU*Dh)e− (rU*Dh)w+ (rV*Dj)n− (rV*Dj)s. (27f)

When the pressure-correction has been solved, Equations (21a) and (21b) are used to
calculate the corrections of the covariant velocity components in the covariant velocity
method. However, in the Cartesian velocity method, Equations (20a) and (20b), neglecting the
cross-derivatives of the pressure corrections, are used to calculate the corrections of the
contravariant velocity components. Then the following relations are used to calculate the
corrections of the Cartesian velocity components:
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u %= (U %xj+V %xh)/J, (28a)

6%= (U %yj+V %yh)/J. (28b)

2.4. Momentum interpolation technique

On a collocated grid system, the checkerboard pressure field will be encountered unless some
special treatments are taken. Rhie and Chow [4] first developed the following cell-face
momentum interpolation technique to overcome this problem:

U*e =U( *e +
� 8

AP/au

�
e

��(p*
(j

�
e

−
�(p*
(j

�
e

n
, (29)

where the overbar implies that values are obtained by a linear interpolation scheme.
It is seen that au is included in Equation (29). Majumdar [15] has found that with the use

of Equation (29), the final convergent result will depend on au. In order to get a convergent
solution independent of the relaxation factor used for velocity, the following formula is
adopted:

U*e =U( *e +
� 8

AP

�
e

��(p*
(j

�
e

−
�(p*
(j

�
e

n
. (30a)

Similarly, the contravariant velocity V* at cell-face n can be calculated by

V*n=V( *n+
� g

AP

�
n

��(p*
(h

�
n

−
�(p*
(h

�
n

n
. (30b)

Equations (30a) and (30b) were always used by Melaaen [6,7].

2.5. Solution algorithm

The overall solution algorithm is as follows:

1. Guess values for all the variables.
2. In the Cartesian velocity method, solve Equations (9a) and (9b) to obtain u* and 6*. In the

covariant velocity method, solve Equations (15a) and (15b) to obtain u*j and u*h.
3. Calculate the contravariant velocity components at cell-faces using Equations (30a) and

(30b), and thereby calculate the source term of the pressure-correction equation.
4. Solve the pressure-correction equation, i.e. Equation (26), to obtain p %.
5. Use the pressure corrections to correct the pressure field via

p=p*+app %, (31)

where ap is the relaxation factor for pressure.
6. Correct the contravariant velocity components using Equations (20a) and (20b), neglecting

the cross-derivatives of the pressure corrections.
7. In the Cartesian velocity method, correct the Cartesian velocity components using Equa-

tions (28a) and (28b). In the covariant velocity method, correct the covariant velocity
components using Equations (21a) and (21b).

8. Return to step (2) and repeat the whole procedure until a convergent solution is achieved.
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3. RESULTS AND DISCUSSIONS

The laminar flow in a cavity with a moving lid, as shown in Figure 2, is often used as a test
to validate a numerical procedure. In this study, the Reynolds numbers based on the velocity
of the moving lid and the side length of the cavity are 100 and 1000 respectively. The inclined
angle between two sides of the cavity is changed from 90° to 30°. In total, four cases, i.e.
b=30°, 45°, 60° and 90° are investigated using the Cartesian and covariant velocity methods.

3.1. Accuracy

In order to validate the numerical accuracy of the present procedure, it is first applied to
calculate the 90° cavity flow with a Reynolds number of 100. The profiles of velocities in the
x- and y-directions are compared with the benchmark data of Ghia et al. (1982) [16]. The
computed profiles of velocity U at x=L/2 with three kinds of uniform grid are shown in

Figure 2. Cavity geometry and boundary condition.

Figure 3. Profiles of velocities for a cavity at b=90°, Re=100: (a) U ; (b) V.
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Figure 4. Calculated streamlines for a cavity at b=90°.

Figure 3(a). The convergence criterion is that the maximum residual in the pressure-correction
equation falls below 10−8.

The corresponding computed profiles of velocity V at y=L/2 are shown in Figure 3(b).
From Figure 3(a) and (b) it is seen that with increasing grid points, the computed profiles of
both U and V become closer to the benchmark data. Ghia et al. [16] adopted quite a fine grid
of 129×129 in their computation. However, it is found that when the grid is as fine as
71×71, the present predictions are in good agreement with the benchmark data. Computed
streamlines in the 90° cavity are plotted in Figure 4. It is easily observed that the profiles of
the streamlines are quite reasonable when compared with those of Ghia et al. [16]. It should
be noted that in the following computations, a moderate uniform grid of 35×35 is used, and
the convergence criterion is that the maximum residuals in all equations fall below 10−6 so as
to save computer time.

Computed streamlines in the cavity at b=60° by the Cartesian and covariant velocity
methods are plotted in Figure 5(a) and (b) respectively. It is observed that the computed
streamlines by the Cartesian velocity method are nearly identical to those by the covariant
velocity method. Computed streamlines in the cavity at b=45° and 30° are shown in Figures
6 and 7 respectively. It is also found that the streamline profiles by the Cartesian and covariant
velocity methods are almost identical to each other. Therefore, it may be concluded that
regardless whether the Cartesian velocity components or the covariant velocity components are
adopted as the main variables in the momentum equations, the numerical accuracy is the same.
3.2. Con6ergence

The convergence performance of the SIMPLEC method for the 90° cavity flow with a
Reynolds number of 100 is shown in Figure 8. It is found that when ap is larger than 0.5, the
iteration number needed to get a convergent solution does not change very much. This is
because the pressure–velocity coupling is easier to carry out on an orthogonal grid. With the
increase of au, the iteration number required decreases.
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Figure 5. Calculated streamlines for a cavity at b=60°, Re=100: (a) Cartesian velocity method; (b) covariant
velocity method.

The convergence performance of the Cartesian and covariant velocity methods for the cavity
flow at b=60° is shown in Figure 9 with various au. It is found that when apB0.8, the
iteration numbers in the two methods are close to each other. However, the iteration numbers
by the covariant velocity method are somewhat less than those by the Cartesian velocity
method. From Figures 9(a) and (b), it is seen that when ap\0.8, the iteration numbers in the
covariant velocity method increase, while the iteration numbers in the Cartesian velocity
method decrease.

Figure 6. Calculated streamlines for a cavity at b=45°, Re=100: (a) Cartesian velocity method; (b) covariant
velocity method.
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Figure 7. Calculated streamlines for a cavity at b=30°, Re=100: (a) Cartesian velocity method; (b) covariant
velocity method.

The corresponding convergence performance of the two methods for the case of b=45° is
shown in Figure 10. For cases of au=0.5 and 0.6, when apB0.5, the iteration numbers by the
covariant velocity method are less than those by the Cartesian velocity method. However,
when ap\0.5, the iteration numbers required by the covariant velocity method increase
rapidly. For cases of au=0.7 and 0.8, a similar conclusion can be drawn from Figure 10(c) and
(d).

The convergence performance of the two methods for the case of b=30° is plotted in Figure
11. It is easily found that when ap is very small (around 0.3), the iteration numbers required
by the covariant velocity method are less than those required by the Cartesian velocity method.
Unfortunately, when ap increases, the iteration numbers required by the covariant velocity
method do not decrease as the Cartesian velocity method, but increase inversely. The
convergence range of ap in the covariant velocity method is very narrow, while in the Cartesian
velocity method, the convergence range of ap is quite wide. This is the main difference between
the two methods.

Figure 8. Convergence performance for a cavity at b=90°, Re=100.

Copyright © 1999 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 31: 1265–1280 (1999)
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Figure 9. Convergence performance of the two methods for a cavity at b=60°, Re=100: (a) au=0.5, (b) au=0.6,
(c) au=0.7 and (d) au=0.8.

From the above comparisons, it may be concluded that for cases of b]60°, the convergence
performance of the Cartesian and covariant velocity methods is not so different from each
other. However, for cases of b545°, the convergence performance of the two methods is
completely different from each other. When ap is quite small, the iteration numbers by the
covariant velocity method are less than those by the Cartesian velocity method. When ap

increases, the iteration numbers by the covariant velocity method will increase rather than
decrease, as for the Cartesian velocity method. For most cases, it is hard to get a convergent
solution by the covariant velocity method unless ap is very small. Therefore, the convergence
range of ap in the covariant velocity method becomes very narrow when b is small. For the

Figure 10. Convergence performance of the two methods for a cavity at b=45°, Re=100: (a) au=0.5, (b) au=0.6,
(c) au=0.7 and (d) au=0.8. Notations as in Figure 9.
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Figure 11. Convergence performance of the two methods for a cavity at b=30°, Re=100: (a) au=0.5, (b) au=0.6,
(c) au=0.7 and (d) au=0.8. Notations as in Figure 9.

Cartesian velocity method, a convergent solution can be obtained when ap becomes as large as
unity, and b is as small as 30°. When ap is very small, the covariant velocity method is faster
than the Cartesian velocity method. However, the overall performance of the Cartesian
velocity method should be superior to that of the covariant velocity method.

In order to examine the influence of the Reynolds number on the convergence rates, the 30°
cavity flow at Re=1000 is also calculated by both methods using the same grid number as for
the case of Re=100. The convergence performance is shown in Figure 12. It is found that the
convergence performances of the Cartesian and covariant methods are similar to those for the
30° cavity flow at Re=100. From the comparison between Figures 11 and 12, it is seen that

Figure 12. Convergence performance of the two methods for a cavity at b=30°, Re=1000: (a) au=0.5, (b) au=0.6,
(c) au=0.7 and (d) au=0.8. Notations as in Figure 9.
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the convergence rate for both methods decreases with increasing Reynolds number. To get a
higher Reynolds number, the viscosity of fluid should decrease if the velocity of the moving lid
is kept constant. Therefore, it will become slower to transfer the boundary information to the
interior region of the cavity during the numerical iteration. This is the reason why the
convergence rate for higher Reynolds number flow will decrease.

3.3. Discussions

From the above comparisons, it is concluded that the overall convergence performance of
the Cartesian velocity method is better than that of the covariant velocity method. This is not
consistent with the usual idea that the adoption of the covariant velocity method should be
better than that of the Cartesian velocity method. This is discussed below.

When the pressure-correction equation is formulated, the cross-derivatives of the pressure
corrections in Equations (20a) and (20b) are usually neglected to avoid solving a nine-diagonal
matrix. Due to the omission of the cross-derivatives of the pressure corrections, it is not so
proper to correct the covariant velocity components using Equations (21a) and (21b) in the
covariant velocity method after the pressure-correction equation has been solved.

In order to consider the effect of the cross-derivatives of the pressure corrections, Wang and
Komori (1998, submitted) treated the cross-derivatives approximately. For example, p %h in
Equation (20a) at point e can be calculated by

p %h,e=
p %ne−p %se

(dh)P

:
p %n−p %s
(dh)P

:
p %N−p %S

(dh)n+ (dh)s

. (32a)

Similarly, p %j in Equation (20b) at point n can be calculated according to

p %j,n=
p %ne−p %nw

(dj)P

:
p %e−p %w
(dj)P

:
p %E−p %W

(dj)e+ (dj)w

. (32b)

When this approximate treatment for the cross-derivatives is used, the coefficients in Equation
(26) can be rewritten as

AE
p = (rBDh/dj)e+ [(rEDj)n− (rEDj)s]/[(dj)e+ (dj)w], (33a)

AW
p = (rBDh/dj)w− [(rEDj)n− (rEDj)s]/[(dj)e+ (dj)w], (33b)

AN
p = (rCDj/dh)n+ [(rDDh)e− (rDDh)w]/[(dh)n+ (dh)s], (33c)

AS
p = (rCDj/dh)s− [(rDDh)e− (rDDh)w]/[(dh)n+ (dh)s]. (33d)

The underlined parts in Equations (33a)–(33d) are the contributions of the cross-derivatives of
the pressure corrections. It should be noted that AP

p and mp in Equation (26) remain
unchanged. Here the modification is just referred to as the modified form of the covariant
velocity method.

Comparisons of the convergence performance of the covariant velocity method and its
modified form are shown in Figure 13. It is found that for cases of b=30° and 45°, the
convergence performance of the modified form becomes much better than that of its original
form. For the case of b=60°, the improvement is not so significant since the cross-derivatives
of the pressure corrections are not so important. Therefore, in order to get the better
convergence performance on strongly non-orthogonal grids, it is quite necessary to consider
the cross-derivatives of the pressure corrections.

In the SIMPLE-like method, the relaxation factor for pressure, ap, is one of the most
important parameters. The choice of a proper ap is the precondition to get a convergent
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Figure 13. Convergence performance comparisons for a cavity at (a) b=30°, Re=100; (b) b=45°, Re=100; (c)
b=60°, Re=100; (d) b=30°, Re=1000.

solution. For an orthogonal grid, an underrelaxation factor of 0.8 for ap is usually recom-
mended in the SIMPLE method [2], since terms like � Anbu %nb and � Anb6%nb in Equations (17a)
and (17b) are omitted in the derivation of the pressure-correction equation. In the SIMPLEC
method, however, terms like � Anb(u %nb−u %p) and � Anb(6%nb−6%p) are omitted [3]. The omission
in the SIMPLEC method is more reasonable than in the SIMPLE method, therefore, a
relaxation factor as high as unity can be adopted for ap. For non-orthogonal grids, Peric [9]
derived a formulation between the optimum relaxation factor for pressure and that for velocity
as ap=1.1−au in the SIMPLE method. From the present calculated results using the
SIMPLEC method, it is found that the optimum value for ap is also unity when the Cartesian
method is used. When the covariant method is used, however, the optimum value for ap may
depend on the skew angle of the cavity. For b=60° the optimum value for ap is 0.8. For
b=45°, the optimum value for ap is around 0.5. For b=30°, the optimum value for ap is
around 0.4. Therefore, a safer relaxation factor of 0.4 for ap can be adopted for strongly
non-orthogonal grids. When the cross-derivatives of the pressure corrections are considered, a
safer relaxation factor as high as 0.7 can be used for very strongly non-orthogonal grids.
Therefore, the inclusion of the cross-derivatives of the pressure corrections is very successful.

4. CONCLUDING REMARKS

On non-orthogonal collocated grids, the Cartesian and covariant velocity methods are used to
calculate a two-dimensional lid-driven cavity flow. Numerical accuracy and convergence
performance of the two methods are compared from the results of a large number of computer
computations. Comparisons show that both the Cartesian and covariant velocity methods have
the same numerical accuracy for the same cavity flow. The convergence rate of the covariant
velocity method is faster than that of the Cartesian velocity method when ap is quite small.
However, the convergence range of the relaxation factor ap in the covariant velocity method is
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fairly narrow. When the cross-derivatives in the pressure-correction equation are treated
approximately, the convergence performance of the covariant velocity method can be greatly
improved. Therefore, the treatment of the cross-derivatives in the pressure-correction equation
is quite important in computing fluid flows on strongly non-orthogonal grids.
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